

Pricing local emission exposure of road traffic An agent-based approach

Dr. Benjamin Kickhöfer | TU Berlin Konferenz "Verkehrsökonomik und –politik" (VÖP)

Berlin, 27.06.2014

Motivation

Costs Related to Exhaust Emissions

- Popuation / Activity Location Density Direct damages to human health (increased health costs, mortality, ...)
 - Indirect impacts on housing market (reduced property values, rents, ...)
 - Indirect impacts on quality of life, livability of the city
 - Direct damages to building structure

Related to

Indirect impacts from global warming (weather extremes) •

Optimal Pricing with MATSim

Deriving Damage Cost Estimates of Exhaust Emissions

- 1. Modeling emission levels
- 2. Modeling dispersion and deriving air quality
- 3. Modeling exposure of individuals to air pollutant concentration
- 4. Applying concentration-response functions [numbers of cases for mortality, life years lost, hospital admissions, premature mortality, minor restricted activity days, work loss days, etc.]
- 5. Assigning monetary values to each of these cases

How to determine the "correct" price level iteratively?

Approach

Modeling Emission Levels

HBEFA: Handbook on Emission Factors for Road Transport (see www.hbefa.net) This is a non-exhaustive list of differentiations provided by HBEFA 3.1

Idea 1: Emission Toll (Independent of Exposure)

- Whenever a person leaves a road segment:
 - Calculate emissions (dependent on vehicle, traffic state, ...)
 - Calculate emission costs (flat toll per [g])
 - Charge that person with the resulting individual toll
- Differentiated tolls are now part of the individual decision making process of every person

Idea 2: Exposure Toll (Dependent of Exposure)

Results:

Munich Metropolitan Area

Subpopulations and Choice Dimensions

- Subpopulations:
 - Urban travelers
 - Commuters
 - Reverse Commuters
 - Freight
- Choice dimensions:
 - Route choice
 - Mode choice (car vs public transit; other modes fixed)
 - Freight: only route choice

Base Case: Absolute Emissions by Subpopulation

Changes in Relative Emissions by Subpopulation

Absolute Changes in User Benefits by Subpopulation

Resulting Emission Cost Factors (Link-Based)

Absolute Changes in Exposure Costs by Subpopulation

Toll Payments at Home Location

Technische Universität

Berlin

Summary

- Exposure should be accounted for; bottleneck is the air pollution concentration model > simplified approach
- Calculation of vehicle-specific, time-dependent tolls is possible for large-scale real-world scenarios
- Both, emission toll and exposure toll can be used as benchmark for evaluating real-world policies
- Emission toll (flat value per [g]) leads to only a small reduction in exposure costs
- Exposure toll will lead to less exposure costs, but can lead to more emissions [potential conflict: CO2 vs local pollutants]
- MATSim allows for in-depth analysis (e.g. identifying areas with "environmentally friendly" vs "polluting" life styles

Thank you.

Evaluating a Speed Limitation in the Inner City

Absolute Changes in NO2 Emissions

Universität

Berlin

Changes in Relative Emissions by Subpopulation

Absolute Changes in Benefits by Subpopulation

Technisch

Universität Berlin

Backup

Emission Modeling Tool: Warm Emission Events

Emission Modeling Tool: Cold Emission Events

Behavioral Parameters

		· · · · · · · · · · · · · · · · · · ·
$\hat{\beta}_{tr,car}$	-0.96	$\left[\frac{utils}{h}\right]$
$\hat{\beta}_{tr,pt}$	-1.14	$\left[\frac{utils}{h}\right]$
$\hat{m{eta}}_{c}$	-0.062	$\left[\frac{utils}{AUD}\right]$
\hat{eta}_{perf}	N/A	$\left[\frac{utils}{h}\right]$
$VTTS_{car}$	+15.48	$\left[\frac{AUD}{h}\right]$
$VTTS_{pt}$	+18.39	$\left[\frac{AUD}{h}\right]$

Table 5.1.:	Estimated	and a	adjusted	utility	parameters;	resulting	VTTS.
-------------	-----------	-------	----------	---------	-------------	-----------	-------

$\beta_{tr,car}$	-0.00	$\left[\frac{utils}{h}\right]$
$\beta_{tr,pt}$	-0.18	$\left[\frac{utils}{h}\right]$
β_c	-0.07949	$\left[\frac{utils}{EUR}\right]$
$\beta_{\it perf}$	+0.96	$\left[\frac{utils}{h}\right]$
$VTTS_{car}$	+12.08	$\left[\frac{EUR}{h}\right]$
$VTTS_{pt}$	+14.34	$\left[\frac{EUR}{h}\right]$

(a) Tirachini et al. (2014) (b) MATSim

Emission Cost Factors

Emission type	Cost factor $[EUR/ton]$
CO_2	70
NMHC	1'700
NO_x	9'600
PM	384'500
SO_2	11'000

Table 5.2.: Emission cost factors by emission type. Source: Maibach et al. (2008).

