How coupled economic activity and freight transport demand really is: concept of a new economic indicator

Stephan Müller, Axel Wolfermann and Jens Klauenberg

Introduction

- Traditionally the relation between economic activity and freight Transport is used to make forecasts of future aggregate freight flows and volumes.
- Usually (GDP) is used as an indicator for economic activity
- But it is shown that: GDP is not the best indicator because
 - its composition changed and is still changing
 - some methods to link freight transport to GDP are not suited
 - the link between freight transport and economic activity itself has been changed.
- The general conclusion is that more specific disaggregate approaches are needed

Source: Meersman and Van de Voorde

What is the challenge?

- Economy implies freight transport!
 - How much?
 - How much of which specific goods?
 - How much of which specific goods by which economic activity?

We developed a "simple" method and show:

how coupled we really are in terms of tonnage and ton kilometres.

Picture source: ec.europa.eu/transport/, adapted

Outline

1. Method to create the economic indicator

2. Correlation results for Germany

3. Discussion of the method, results and possible applications fields

4

The basic idea:

- Using disaggregated economic indicators to estimate freight generation based on supply and use tables
 - 1. Build weighting functions concerning products its supply or use
 - 2. Derive weighting factors from supply-use tables
 - 3. Weight GVA and calculate the indicators for goods (CPA-classified)
 - 4. Transform CPA classified goods into NSTR-24 classified goods
 - 5. Perform a regression analysis

Step 1: functions for production and consumption of products

- Supply use table is the base
 - Supply tables containing producers prices
 - Use tables containing purchaser prices

Step 1: functions for production and consumption of products

- We utalize supply tables to extract a weighted function for production
 - Using the supply tables' information per row enables us to know which industries produce the same products.
- We utalize use tables to extract a weighted function for consumption
 - Using the use tables' information per row enables us to know which industries use the same products.

Step 1: functions for production and consumption of products

- We utalize supply tables to extract a weighted function for production
- We utalize use tables to extract a weighted function for consumption

$$\widehat{EI}_{i} = \sum_{j} (\alpha_{i,j} \cdot GVA_{j})$$

 \widehat{EI} : CPA classified economic indicator (\mathfrak{E})

i: index for products (CPA divisions)

j: index for economic activities (NACE division)

 α: relevance of economic activity *j* for transportation of product *i* (for each option: use based, supply based, core industry based)

 $\sum_{j} \alpha_{i,j} = 1$ for each product \underline{i}

KONFERENZ VERKEHRSÖKONOMIK UND -POLITIK 2015: How coupled economic activity and freight transport demand really is

Step 2: Derive weighting factors for both functions

- We utalize the price information from supply use tables to extract weighted factors
- We utalize use tables to extract weighted consumption function

KONFERENZ VERKEHRSÖKONOMIK UND -POLITIK 2015: How coupled economic activity and freight transport demand really is

Step 2: Derive weighting factors for both functions

- We utalize the price information from supply use tables to extract weighted factors
- We utalize use tables to extract weighted consumption function

Step 3: Weight GVA and calculate the indicators

- GVA from general economic statistics avialable
- Two economic indicators can be calulated now
 - 1 supply table based
 - 1 use table based
- However CPA classified \rightarrow we intend a NSTR classified indicator
 - CPA are products in Euro
 - NSTR are transported commodities in tons
 - We need a brigde matrix

Step 4: Transform CPA – into NSTR-24

- We need a brigde matrix (a beta)

$$EI_k = \sum_i \left(\widehat{EI}_i \cdot \beta_{i,k}\right)$$

EI:economic indicator (€)i:index for products (CPA divisions 1-37)k:index for commodities (NST/R-24 with 24 sub-chapters)β:weight of product (CPA) for commodity (NST)∑i β i,k = 1 for each commodity k

KONFERENZ VERKEHRSÖKONOMIK UND -POLITIK 2015: How coupled economic activity and freight transport demand really is

Step 4: Transform CPA into NSTR-24

- We need a brigde matrix to re-classify CPA into NSTR

- 1. Allocate products to transported commodities (Emberger et al. 2010)
- 2. Quantify the aportionment by using a distribution

Step 4: Transform CPA – into NSTR-24

- We need a brigde matrix

NSTR24	CPA	β	NSTR24	CPA	β	NSTR24	CPA	β	
01	01	0.33	13	27	0.51	24	01	0.1	
02	01	0.36	14	26	0.88	24	05	0.2	
03	01	0.12	15	14	1	24	12	1	
03	05	0.34	16	24	0.09	24	15	0.1	
04	02	1	16	25	0.06	24	16	0.8	
04	20	1	17	24	0.01	24	17	0.3	
05	17	0.07	17	25	0.01	24	18	0.3	
05	18	0.07	18	7/	በ	24	10	U 2	
05	19	0.07	18		-		-		
05	36	0.06	19	EL :	$= \widehat{FL}_{-}$.09 +	- ÊĹ	$\cdot 0.2$	
05	37	0.07	20	ш6,у	<i>L</i> 115,	y 0.7 1	L1 16,j	, 0.2	
06	15	0.9	20						
06	16	0.2	20	EI.	0001	nomio in/	ligator	(C)	
07	01	0.09	20	EI.	ecor	nonne me	licator	(t)	
07	05	0.46	20	Ēŀ	CPA	A classifi	ed econ	omic indi	cator (€
08	10	1	20	ш.	011	I CIUDDIII			Cator (C
09	11	0.01	20	y :	year	r			
09	23	0.01	21		•				
10	11	0.99	21			·			
10	23	0.99	22	26	0.07	24	33	0.67	
11	13	0.92	23	17	0.63	24	34	0.1	
11	27	0.25	23	18	0.63	24	35	0.1	
12	13	0.08	23	19	0.63	24	36	0.34	
12	27	0.03	23	36	0.6	24	37	0.25	
13	28	0.68	23	37	0.68				

Finally: perform a lin. regression analysis

- All data available from 1999-2007 [Eurostat]
 - Example NSTR-24 (6): Foodstuff and animal fodder

KONFERENZ VERKEHRSÖKON				Tonnage in
demand really is		R ² supply	R² use	2007 [%]
	Cereals	0.000	0.310	1.03%
	Potatoes, other fresh or frozen fruits	0.0.4	0.011	
	and vegetables		0.011	0.94%
	Live animals, sugar beet	0.231	0.344	0.59%
	Wood and cork	0.072	0.252	2.56%
	Textiles, textile articles, etc	0.152	0.152	0.54%
dities	Foodstuff and animal fodder	0.142	0.911	10.23%
ce of >	Oil seeds and oleaginous fruits and fats	0.700	0.651	0.70%
	Solid minerals fuels	0.369	0.096	2.72%
	Crude petroleum	0.311	0.106	0.03%
ndities	Petroleum products	0.106	0.568	4.98%
	Iron ore, iron and steel waste	0.002	0.049	2.57%
% 01	Non-ferrous ores and waste	0.028	0.134	0.26%
d	Metal products	0.817	0.828	4.78%
	Cement, lime, manufactured building	0.942	0 000	
	materials		0.070	5.09%
	Crude and manufactured minerals	0.463	0.981	33.40%
	Natural and chemical fertilizers	0.282	0.447	1.03%
	Coal chemicals, tar	0.462	0.529	0.11%
	Chemicals other than coal chemicals and tar	0.184	0.355	6.72%
	Paper pulp and waste paper	0.022	0.153	0.99%
	Transport equipment, machinery, etc	0.967	0.871	4.01%
	Manufactures of metal	0.784	0.831	1.49%
	Glass, glassware, ceramic products	0.563	0.670	0.55%
	Leather, textile, clothing	0.762	0.378	4.86%
	Miscellaneous articles	0.917	0.829	9.81%
Mar Son	Σ Correlating tonnage			

Results I: Tonnage [t]

- 15 of 24 commodities have a significance of 90 %
- These 15 commodities represent ca. 90 % of goods transported

2.2.0

Results II: Ton kilometres [tkm]

- 16 of 24 commodities have a significance of > 90 %
- These 16 commodities represent ca. 88 % of goods transported

			Ton kilometres
	R ² supply	R ² use	in 2007 [%]
Cereals	0.716	0.104	1.57%
Potatoes, other fresh or frozen fruits and	0.448	0.202	1.50%
Live animals, sugar beet	0.591	0.628	0.45%
Wood and cork	0.225	0.461	2.94%
Textiles, textile articles, etc	0.092	0.143	0.60%
Foodstuff and animal fodder	0.136	0.931	11.80%
Oil seeds and oleaginous fruits and fats	0.735	0.662	1.13%
Solid minerals fuels	0.722	0.020	3.15%
Crude petroleum	0.256	0.021	0.03%
Petroleum products	0.008	0.174	5.42%
Iron ore, iron and steel waste	0.044	0.228	3.06%
Non-ferrous ores and waste	0.048	0.095	0.29%
Metal products	0.812	0.828	7.45%
Cement, lime, manufactured building	0.678	0.504	4.46%
Crude and manufactured minerals	0.710	0.443	10.45%
Natural and chemical fertilizers	0.006	0.003	1.31%
Coal chemicals, tar	0.880	0.870	0.22%
Chemicals other than coal chemicals and	0.899	0.877	7.93%
Paper pulp and waste paper	0.324	0.655	1.24%
Transport equipment, machinery, etc	0.980	0.929	6.95%
Manufactures of metal	0.800	0.815	1.95%
Glass, glassware, ceramic products	0.000	0.011	0.87%
Leather, textile, clothing	0.678	0.498	8.52%
Miscellaneous articles	0.915	0.806	16.68%
	∑ Correlating Tkm		88.41%

Other European examples at a glance (first results)

→ currently we elaborate other European countries in the frame of a master's thesis

Found significances:

- France: 73.7 % of the tonnage and 79.7 % of the ton kilometres
- Italy: 83.9 % of the tonnage and 37.2 % of the ton kilometres
- Netherlands: 57.8 % of the tonnage and 34.4 % of the ton kilometres
- Other countries and a deep going interpretation is following soon

Discussion of the method

- Disaggregated approaches enable to investigate the coupling/ decoupling
- Just public available data are used (EUROSTAT) -> calibration is possible
 - More time series data diserable
 - In future the bridge matrix is not needed (NST2007)
- Correlation is found, however no explaination power
 - Taking into account the handling in the transport of goods

Application fields

- Coupling/decoupling discussion
 - Indicator observation over long term
- "Fast forecast"
 - Transport implication by economic activity
- Useful in modeling issues:
 - Disagregated goods in freight generation
 - Time-dependent value densities
- Data interpolation
 - E.g. USA where nat. freight data are detected in frequence of 5y
 - Method has to be evaluated first for countries

Final massages:

- 1. The information from supply and use tables and the introduced economic indicator are useful to investigate the coupling/decoupling between economy and transport in a new way.
- 2. A strong coupling between economy and transport, measured in tonnes transported or ton kilometres can be found using the "right" indicators.
- 3. The correlations indicate that the demand side of the economy drives the transport demand (i.e. a use table based indicator shows better correlation).

KONFERENZ VERKEHRSÖKONOMIK UND -POLITIK 2015: How coupled economic activity and freight transport demand really is

Thank you for your attention.

Contact:

Dr.-Ing. Stephan Müller DLR-Institute of Transport Research

Email: stephan.mueller@dlr.de

