

Konferenz "Verkehrsökonomik und -politik" Berlin, 11.06.2015

Wider economic disbenefits of not implementing the European TEN-T core network corridors (CNC)

Dr. Wolfgang Schade M-Five GmbH Mobility, Futures, Innovation, Economics

wolfgang.schade@m-five.de

Dr. Michael Krail, Fraunhofer ISI

PROJECT OBJECTIVES

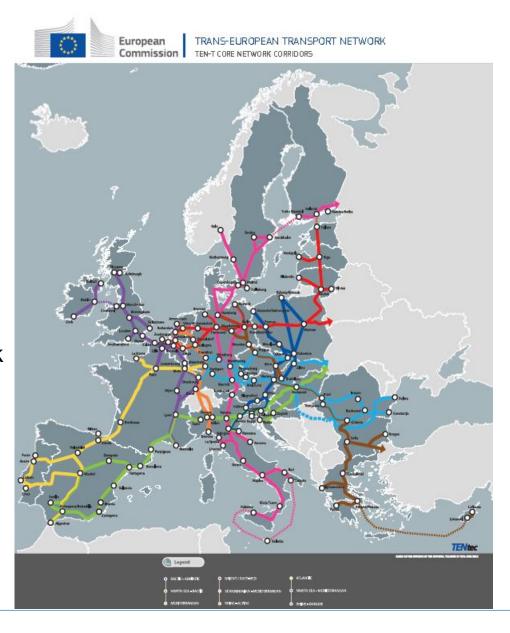
- Quantitative assessment of impacts if TEN-T would not be implemented as defined by TEN-T guidelines and CEF (EU Regulations 1315/2013 and 1316/2013).
- Assessment of 2 test cases and 3 scenarios: 2 corridors (test cases to develop the methodology), nine CNCs and full core network, crossborder projects and innovative technologies.
- Focus on wider economic effects, in particular GDP and employment.
- Detailed qualitative and quantitative analysis of jobs created by the TEN-T (e.g. quality of jobs, innovativeness of jobs).

PROJECT TEAM

Lead: Fraunhofer

Partners: PTV GROUP

Support: MFiVE


Client: European Commission

TEN-T CORE NETWORK 9 CNC (CORE NETWORK CORRIDORS)

TEN-T network comprises:

- TEN-T core network, of which
- 9 core network corridors =75%
- TEN-T comprehensive network
- Innovative technologies

UNDERSTANDING WIDER ECONOMIC BENEFITS

Classical transport CBA

Other cost for transport users e.g. operation cost increases

TEN-T transport investment

Benefits for transport users usually largest are time savings

Wider economic benefits

Net-Benefits for externalities

Macro-economic analysis

TEN-T transport investment

Macro-economic benefits, either GDP or value-added or disposable income

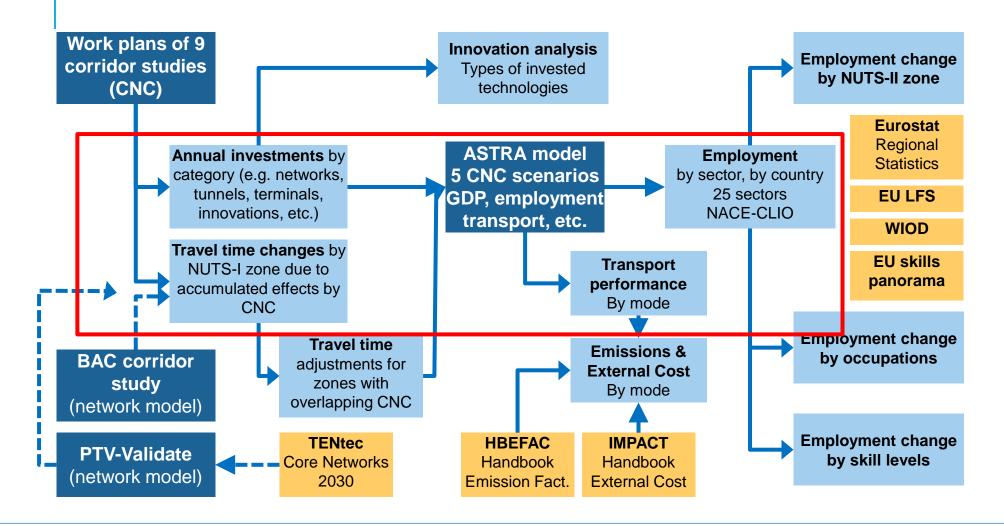
European added-value

Net-Benefits for externalities

Costs of transport infrastructure

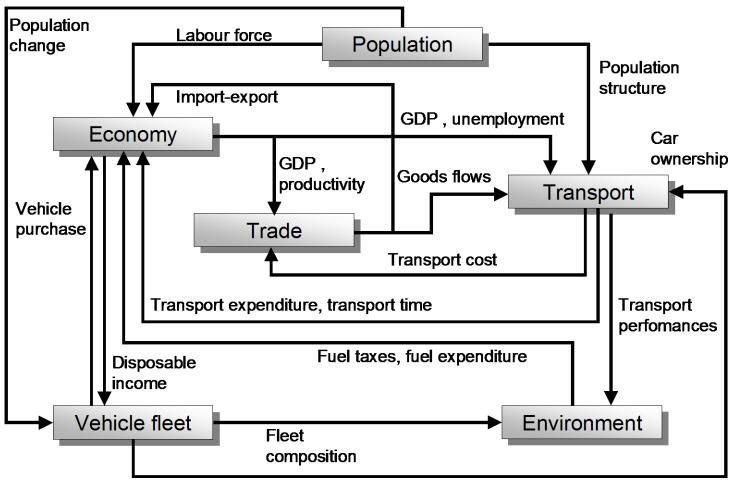
BC ratio = $\frac{\text{Benefit side}}{\text{Cost side}}$

Benefits of transport infrastructure

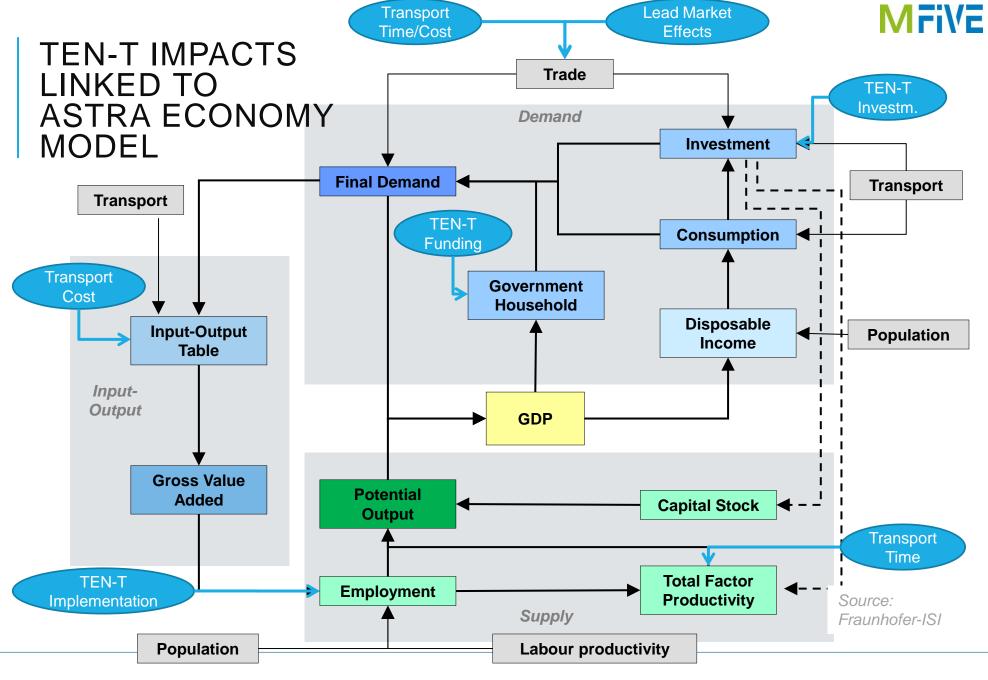

Source: Own presentation

Macro-economic benefit = (

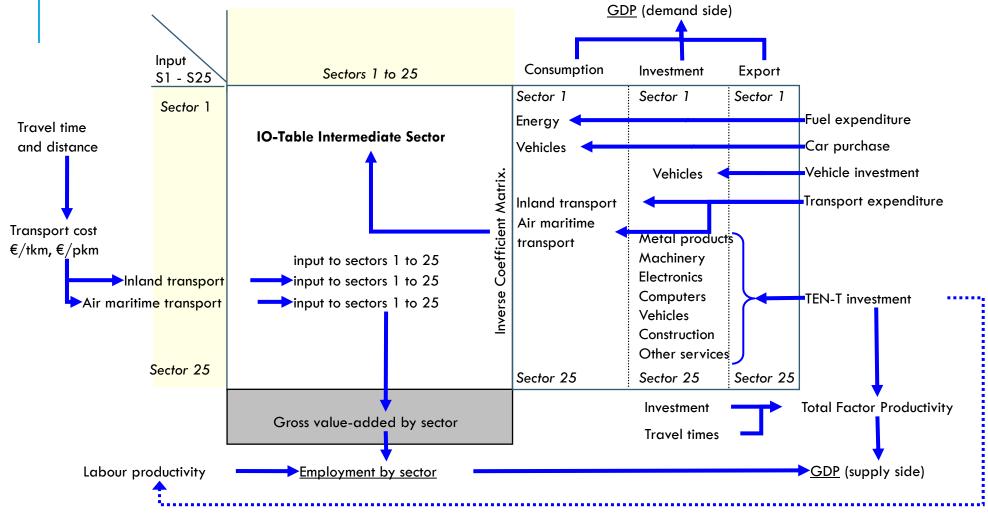
Cost side X Multiplier



WORKFLOW OF THE PROJECT AND USAGE OF ASTRA MODEL



ASTRA MODEL (=ASSESSMENT OF TRANSPORT STRATEGIES) INTEGRATED MODEL



Source: Fraunhofer-ISI/TRT

LINKING TRANSPORT CHANGES TO THE ECONOMIC ACCOUNTING

SCENARIO SETTING – SELECTION OF CNC PROJECTS

No CNC ScanMed

- CNC Scandinavian-Mediterranean longest of all 9 CNC (from Sweden to Malta), crossing 7 countries
- Highest investments of all 9 CNC → large projects like Fehmarn Belt Crossing or Brenner Base Tunnel
- Planned CNC investments between 2015 and 2030 for EU28 → € 106 billion *

No CNC RhAlp

- CNC Rhine-Alpine crosses 5 countries (from Netherlands to Italy)
- Already intensive travel demand on this corridor
- Large projects: Gotthard BT, Rail Karlsruhe-Basle
- CNC investments between 2015 and 2030 for EU28 → € 31.6 billion (plus € 11.3 billion for CH)*
- Test against Reference Scenario with full core TEN-T network by 2030

*All monetary values are expressed in real terms in constant € 2005

TIME SAVINGS – ASSESSMENT APROACH

- Basic input: List of about 634 projects/investments from CNC work plans of the two corridors (total TEN-T core network has about 2,700 projects)
- Individual assessment of time savings by project and CNC for each NUTS1 zone (plus NO and CH)
- Rules for estimating travel time savings of:
 - Innovative technologies (ERTMS, SESAR, RIS, etc.) → Literature review
 - SESAR 10% time savings per EU flight (SESAR Joint Undertaking 2011*)
 - ERTMS max. 20% time savings for level 2 (Obrenovic et al. 2006**)
 - RIS max. 10% (mainly for safety, but optimization at locks, etc.)
 - Cross-border: Large projects e.g. Fehmarn–Belt, Brenner, etc. → Literature review
 - Rule of thumbs for multi-modal platforms, logistic hubs, etc.

© M-Five 2015

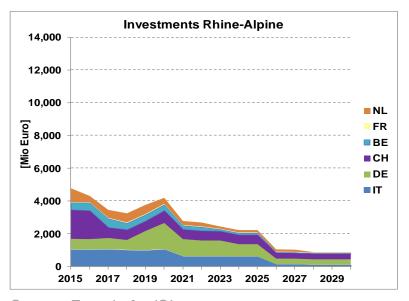
^{*} SESAR Joint Undertaking (2011): Assessing the macroeconomic impact of SESAR.

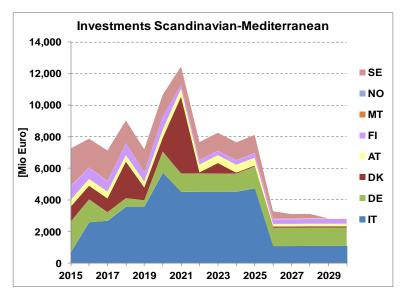
^{**} Obrenovic et al. (2006): European Transport Conference: Proceedings of the ETC; Migration of the European Train control system (ETCS) and the impacts on the international transport markets

INPUTS OF TRANSPORT TIME CHANGES BY NUTS-I ZONE: INTERNATIONAL TRANSPORT (NATIONAL/REGIONAL TRANSPORT SEPARATE)

International Transport		%-travel time increase in case of non-completion - range of all NUTS-I zones affected by a CNC			
PASSENGER travel time changes in 2030		Rail	Car	Bus	Air
SCM	Scandinavian-Med	10%-68%	3%-68%	3%-68%	5%-10%
RHA	Rhine-Alpine	20%-45%	3%	3%	5%

International Transport		%-travel time increase in case of non-completion - range of all NUTS-I zones affected by a CNC			
FREIGHT travel time					
changes in 2030		Rail	Truck	Maritime	IWW
SCM	Scandinavian-Med	10% - 118%	5%-68%	5%	n.a.
RHA	Rhine-Alpine	20%-45%	5%	5%	10%

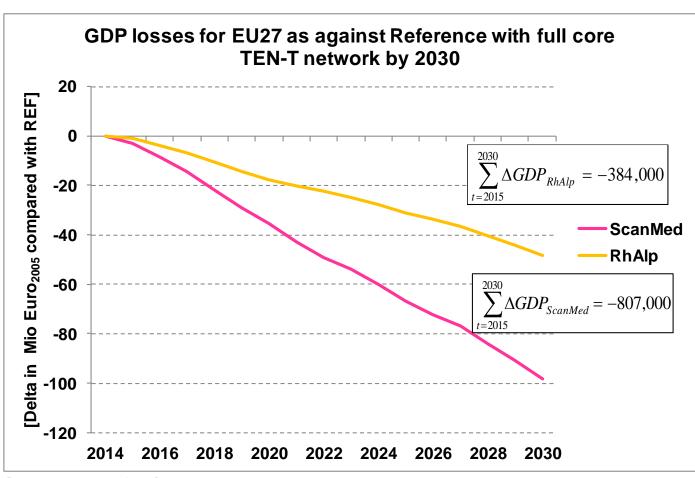

Source: Fraunhofer ISI / PTV


SCENARIO SETTING - AVOIDED **INVESTMENTS**

No CNC ScanMed

- 423 projects from CNC work plan
- Planned investments: € 130 billion* (2015 and 2030: € 106 billion*)
- •16% of all projects / 23% of investments

Source: Fraunhofer-ISI


No CNC RhAlp

- 211 projects from CNC work plan
- Planned investments: € 61 billion* (2015 and 2030: € 43 billion*)
- 8% of all projects / 9% of investments

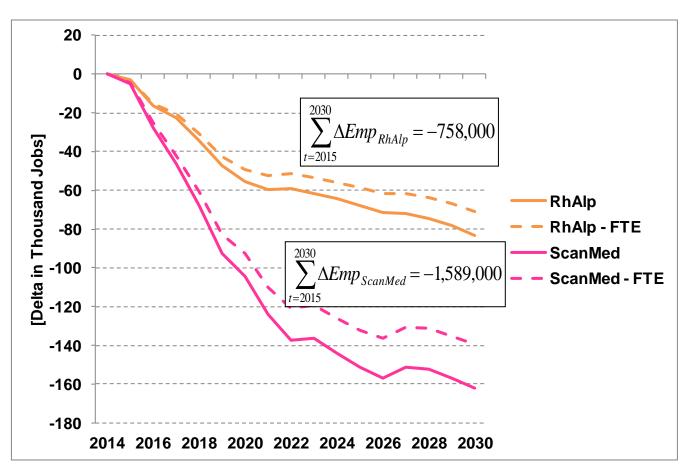
All monetary values are expressed in real terms in constant € 2005

CORRIDOR SCENARIOS – LOSS OF GDP

No ScanMed

- 2030: € 98 bn
- 2015-2030: € 807 bn

No RhAlp


- 2030: € 49 bn
- 2015-2030: € 384 bn

Source: Fraunhofer-ISI

All monetary values are expressed in real terms in constant € 2005

CORRIDOR SCENARIOS – JOBS NOT CREATED

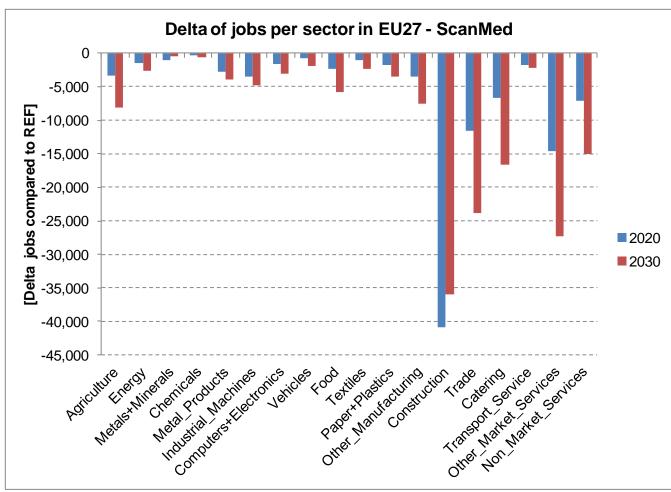
No ScanMed

FTE jobs

- **2**030: 139,000
- **2015-2030**: - 1,6 million

No RhAlp

FTE jobs


- **2030: 71,000**
- **2015-2030**: - 758,000

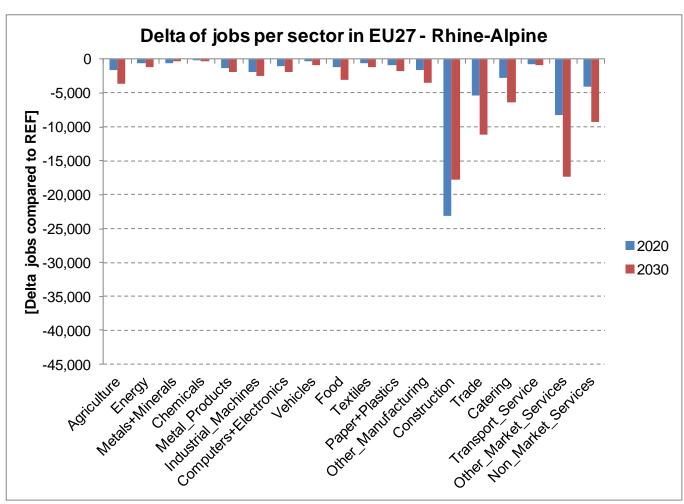
Source: Fraunhofer-ISI

© M-Five 2015

CORRIDOR SCENARIOS – SECTORAL EMPLOYMENT

CNC No ScanMed

- Strongest impact on construction and service sectors
- 2nd round impacts on agriculture
- Modal shift from rail to road compensates loss of rail (and air) jobs

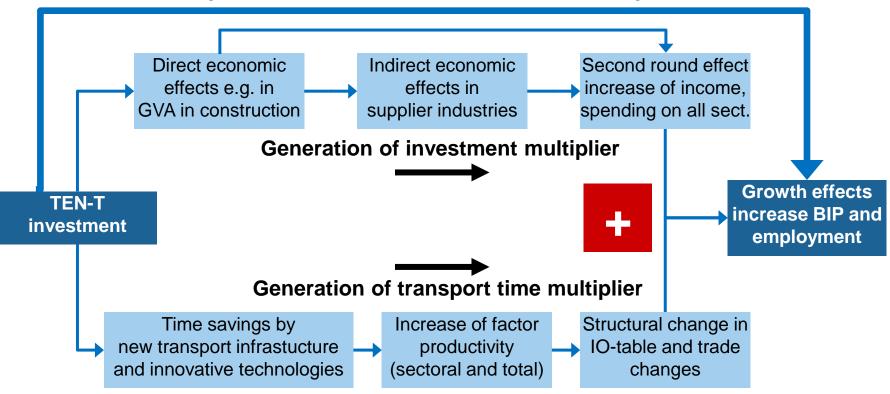

Source: Fraunhofer-ISI

CORRIDOR SCENARIOS - SECTORAL **EMPLOYMENT**

CNC No RhAlp

- Similar impacts
- Strongest impact on construction and service sectors
- 2nd round impacts on agriculture
- Modal shift from rail to road compensates loss of rail (and air) jobs

Source: Fraunhofer-ISI


KEY FINDINGS WIDER ECONOMIC IMPACTS – NO CNC SCANMED AND NO CNC RHALP SCENARIO

Indicator	No CNC ScanMed	No CNC RhAlp	
Avoided investments for EU27 (2015-2030)	€ 106 billion	€ 43 billion	
Loss of GDP for EU27 in 2030 compared with REF	- € 98 billion	- € 49 billion	
Cumulated loss of GDP for EU27 (2015-2030)	- € 807 billion	- € 384 billion	
Jobs not created (Total/FTE) in EU27 in 2030 compared with REF	162,000 / 139,000	83,000 / 71,000	
Job-years (Total/FTE) not created in EU27 (2015-2030)	1.8 million /1.6 million	0.87 million / 0.76 million	

ECONOMIC MULTIPLIER OF TEN-T INVESTMENTS

Multiplier from investment to economic impact

Source: Schade/Krail 2015

COMPARISON OF WIDER ECONOMIC IMPACTS OF THE TWO CORRIDORS

Economic Multipliers	Scenario	Value	Unit
FTE-Job-Years per billion	No_CNC_ScanMed	14,683	Person-Years/B€
investment	No_CNC_RhAlp	25,935	Person-Years/B€
	Literature values	12,700 to 37,300	Person-Years/B€
Accumulated GDP gain per investments (both in bn€)	No_CNC_ScanMed	7.5	GDP/INV Multiplier
Period 2015 to 2030 Effects continue after 2030	No_CNC_RhAlp	13.2	GDP/INV Multiplier

Source: own elaboration

Seite: 22

Dr. Wolfgang Schade

Wissenschaftliche Leitung, Geschäftsführung

M-Five GmbH Mobility, Futures, Innovation, Economics i.G. Frankenstr. 8, 76137 Karlsruhe wolfgang.schade@m-five.de

OPTIONAL SLIDES

IMPACTS OF INFRASTRUCTURE INVESTMENTS IN DIFFEREN SECTORS **Sector specific** Funding structure e.g. Investment e.g. direct economic Transport, Energy, Transport, Energy, Education, IT, etc. Education, IT, etc. impacts Transport Government Sector specific split Travel cost vector to split National investment onto Transport time European, etc. economic sectors Accesibility, etc. **Private** Construction Education Within sector retained earnings Human capital Machinery Domestic investors Labour market, etc. Foreign investors (FDI) **Electronics** Energy Financial sector Metal products **Energy cost** Banks (EIB, KfW, Priv.) → Planning services Energy tax revenues Risk averse investors Energy imports, etc. Etc. sector PPP Etc. sector User (e.g. tolls)

Wider economic effects of the sectoral investment: GDP, income, employment, trade, etc.

Source: Schade/Krail 2015

AVERAGE EMPLOYMENT GENERATION OF INFRASTRUCTURE INVESTMENT

(JOB-YEARS / BN\$ INVESTED)

Project type	Studies reviewed	Total employment generated (Direct + Indirect + Induced)		
		Average values	Total Range	
Energy	16	26,136	8,829 – 51,185	
Transportation	25	24,223	12,709 – 37,259	
Highways	5	34,288	22,535 – 37,259	
Roads and bridges	8	33,770	18,926 – 35,307	
Rail	4	18,871	12,709 – 22,286	
Mass Transit	5	29,295	23,329 – 32,430	
Buildings	10	26,204	17,736 – 32,119	
Water	6	25,297	18,352 – 30,435	
Telecommunication	3	28,608	19,729 – 31,646	
Health 1 20,356 20,356				

Source: National Roads Authority (2013). The Employment Benefits of Investment Projects. International Studies.