

How scale and institutional setting explain the costs of small airports

An application of spatial regression analysis to French and Norwegian airports

Tolga Ülkü Vahidin Jeleskovic Jürgen Müller

> Konferenz "Verkehrsökonomik und -politik" Berlin, 11. und 12. Juni 2015 DIW Berlin

Preface: PhD Thesis with 3 Articles

i. Data Envelopment Analysis		ii. Spatial Regression
<u>Article 1:</u> Small regional airport sustainability: Lessons from benchmarking	<u>Article 2:</u> An Empirical Analysis of Group Airports: AENA (Spain) and DHMI (Turkey)	<u>Article 3:</u> How scale and institutional setting explain the costs of small airports: An application of spatial regression analysis
85 airports across Europe	Spain Turkey	Norway France
 -Relative efficiency Airport groups Remoteness -Break-even point 	 -Relative efficiency Privatization Scale 	

GERMAN AIRPORT PERFORMANCE

Article 1: Lessons from Benchmarking

85 airports from 6 countries:

- Austria, France, Germany, Italy, Norway and UK
- Below 1.6 million passengers annually
- Time Period: 2002-2009

1st Main Result:

Second stage regression results explaining efficiency estimates.

Ln(efficiency estimate)	Explanatory variables	OLS Truncated		d	
		Coef.	t-stat.	Coef.	z-stat
Managerial Variables	Commercial rev >50%	0.03	3.38	0.04	3.67
	Ground handling or fuel sales in-house	-0.03	-5.96	-0.03	-6.16
Non-Discretionary Variables	Belongs to airport system	-0.05	-5.41	-0.05	-5.50
_	PSO served	0.03	4.53	0.04	4.46
	Military involvement	0.02	1.76	0.02	1.74
	Remote area	-0.03	-3.07	-0.03	-3.03
	STOL	0.00	-0.21	0.00	-0.18
	Public	0.01	1.19	0.01	1.13
Partially discretionary	Log EBIT	0.02	4.86	0.02	4.67
Time dummies	d2003	-0.04	-3.30	-0.05	-3.71
	d2004	-0.07	-5.52	-0.08	-5.74
	d2005	-0.08	-6.63	-0.10	-6.79
	d2006	-0.08	-6.93	-0.10	-7.08
	d2007	-0.08	-7.07	-0.10	-7.34
	d2008	-0.09	-7.66	-0.11	-7.92
	d2009	-0.10	-8.29	-0.12	-8.34
	Constant	-0.45	-5.68	-0.42	-5.14

2nd Main Result:

Year	Break-even Point			
2002	200,832	101,015		
2009	463,549	166,233		
	Status quo	Hypothetical		

GERMAN AIRPORT PERFORMANCE

Article 2: Comparison of AENA and DHMI airports

- 73 airports from Spain and Turkey
- Time Period: 2002-2009

Estimates from OLS Regression			
explanatory variables	coefficient	t-statistic	
weekly opening hours	-0.132	-2.66	Longer opening hours \rightarrow Less efficient
bot (ppp) partnership (dummy)	0.166	2.69	PPPs in Turkey increase the efficiency!
share of commercial revenues	0.047	1.18	
percentage of international traffic	-0.023	-1.62	
work load unit (airport size)	0.034	2.70	Larger airports are relatively more efficient
population density	0.018	1.13	
seasonality measured by gini	0.026	1.06	Seasonal strategy successful
joint military-civil airport (dummy)	0.098	3.38	
spain (dummy)	0.178	4.79	Spanish airports are more efficient than Turkish
2010 (dummy)	0.019	0.63	ones!
2011 (dummy)	0.006	0.21	

How scale and institutional setting explain the costs of small airports

An application of spatial regression analysis to French and Norwegian airports

Tolga Ülkü Vahidin Jeleskovic Jürgen Müller

Research Questions:

- What is the level of spatial interdependence between airports regarding airport unit costs?
- > What is the effect of subsidies on airport costs?
- > What is the effect of scale on airport costs?

GERMAN AIRPORT PERFORMANCE

Outline

- 1. Introduction
- 2. Literature Review
- 3. Methodology
- 4. Data
- 5. Results
- 6. Conclusions and Further Research

1. Introduction

Introduction and Motivation

- > In Norway: Avinor \rightarrow Cross-subzidization increased since 2003
- 39 of 46 airports serve under 1 million pax/year
- 7 airports break even. (Only 2 airports under 1 million)
- ➢ In France: Mostly individual management → direct subsidies via local or federal governments
- 64 of 80 airports serve under 1 million pax/year

2. Literature Review

Literature Review: Airport Costs

Estimation of cost functions (selection):

- Carlin&Park (1970)
- Carlsson (2002)
- Martin-Cejas (2002)
- Oum et al. (2008)
- Voltes-Dorta&Pagliari (2012)

Various external factors influence costs

- traffic structure, airport size
- competition and ownership etc.
- delays

various research questions & different answers

> Air

Baker & Donnet (2012) : joint strategic decision by all stakeholders

 \rightarrow But; no empirical analysis of airport subsidies vs. costs to date

Literature Review: Spatial Interdependence

- Similar geographical, climatic and natural characteristics
- Cultural similarities: Behaviour of economic agents
- Unique or close economic conditions (such as GDP)
- Unbiased estimates from econometric point of view

(Pavyluk, 2012)

Various applications of spatial econometrics to airports by Pavyluk (2009, 2010, 2012, 2013)

3. Methodology

Methodology: Spatial regression

"The collection of techniques that deal with the peculiarities caused by space in the statistical analysis of regional science models"

• Anselin, 1988

On the spatial depence;

"Everything is related to everything else, but near things are more related than distant things."

• Tobler, 1970

GERMAN AIRPORT PERFORMANCE

Methodology: Spatial regression

Following Anselin (1988) and LeSage and Page (2009)

$$y = \rho \cdot W \cdot y + X \cdot \beta + Y \cdot W \cdot X + u$$

$$u = \lambda \cdot W \cdot u + \varepsilon$$

with $\varepsilon \sim N(0, \sigma_{\varepsilon}^{2}I_{n})$

$$\rho = \Upsilon = \lambda = 0$$

$$\rho \neq 0 \text{ and } \Upsilon = \lambda = 0$$

$$\rho = 0, \Upsilon = 0 \text{ and } \lambda \neq 0$$

$$\rho = 0, \Upsilon \neq 0 \text{ and } \lambda = 0$$

→ Standard regression model

- → Spatial lag model
- \rightarrow Spatial error model
- \rightarrow Cross regressive model

W is an n x n spatial weights matrix, with a distance decay function

$$W_{ij} = 1 - \frac{1}{1 + a * exp(-b * distance_{ij})}$$

Methodology: Final Specification and Variables

Spatial lag model:	$y_{it} = \rho W y_{it} + \beta X_{kit} + \alpha_i + \varepsilon_{it}$			
dependent vari	able (y):			
costppax	operating costs per passenger			
independent va	riables (x):			
year	time trend dummy variable			
wlu	work load unit (airport size)			
subspcost	subsidies per costs			
aerrevppax	aeronautical revenues per passenger			
noncommatm	share of non-commercial ATM			
pso	public service obligation dummy variable			
deprppax	depreciation per passenger			
α	fixed effect parameter			
8	independent error terms			

Zero values on the diagonal of *W* matrix assures that the interaction of the same observation in the regression equation is excluded.

All monetary variables are in inflation and PPP adjusted Euros.

4. Data

Page 18

 n_{Norway} = 41

Data: Descriptive statistics (two separate datasets)

Descriptive Statistics for Norwegian Airports, 2002-2010

Variable	costppax	wlu	subs	aerrev	noncommatm	pso	depr
Minimum	3.42	5850	0	2.80	0.02	0	0.79
Maximum	247.00	1,649,847	1.50	25.98	0.83	1	142.26
Average	38.62	206,035	0.52	7.91	0.23	0.74	10.50
Standard Deviation	35.45	342.347	0.31	2.69	0.16	0.44	15.01

Descriptive Statistics for French Airports, 2002-2009

$n_{France} = 26$	Variable	costppax	wlu	subs	aerrev	noncommatm	pso	depr
	Minimum	8.25	14,441	0	4.50	0	0	0
	Maximum	66.46	7,295,964	0.70	22.15	0.96	1	18.66
	Average	16.67	826,325	0.15	8.45	0.66	0.53	3.21
	Standard Deviation	8.89	1,274,584	0.16	1.90	0.26	0.50	2.70
								Dene 40

Page 19

5. Results

Page 20

Variable	Norway	France
vear	0.050*	0.026*
7	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
•	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
-	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
	(2.20)	(1.71)
ρ	0.685*	0.365*
-	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted R ²	0.84	0.56
Log-Likelihood	307.00	185.14

- "wlu", aerrevppax" and "deprppax" in natural logarithms.
- t-values are in parentheses

* 1% significance; ** 5% significance; *** 10% significance

Variable	Norway	France
year	0.050*	0.026*
	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
-	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
	(2.20)	(1.71)
ρ	0.685*	0.365*
-	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted R ²	0.84	0.56
Log-Likelihood	307.00	185.14

- spatial autoregressive parameter
- significant spatial dependence
- costs of one airport are positively influenced by the weighted average of costs of neighboring airports
- positive correlation between costs of nearby airports in Norway is stronger than in France

Variable	Norway	France	unit operating costs have increased
vear	0.050*	0.026*	since 2002
7	(9.23)	(6.46)	31106 2002
wlu	-0.816*	-0.443*	
-	(-18.81)	(-10.46)	5 percent annual increase in
subspcost	0.203*	0.219*	Norway
•	(3.87)	(2.76)	
aerrevppax	0.113*	0.223*	 2.6 percent annual increase in
	(3.25)	(4.39)	France
noncommatm	0.229***	-0.266*	
	(1.65)	(-2.85)	
pso	-0.018	-0.046***	
•	(-0.67)	(-1.75)	
deprppax	0.032**	0.014***	
	(2.20)	(1.71)	
0	0.685*	0.365*	
F	(12.36)	(3.55)	
R ²	0.98	0.94	
Adjusted R ²	0.84	0.56	
Log-Likelihood	307.00	185.14	

Variable	Norway	France
vear	0.050*	0.026*
,	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
·	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
•	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
•••	(2.20)	(1.71)
ρ	0.685*	0.365*
	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted R ²	0.84	0.56
Log-Likelihood	307.00	185.14

economies of scale

 A 1% increase in wlu decreases unit costs by 0.82% in Norway & by 0.44% in France

Economies of Scale

GERMAN AVIATION BENCHMARKING

Estimation results

Variable	Norway	France
year	0.050*	0.026*
1	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
•	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
	(2.20)	(1.71)
ρ	0.685*	0.365*
-	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted R ²	0.84	0.56
Log-Likelihood	307.00	185.14

- higher cost coverage by subsidies
- \rightarrow higher unit costs
- subsidies relative to costs increase by one percent
 → unit costs increase by 0.2
- percent

Variable	Norway	France
year	0.050*	0.026*
	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
	(2.20)	(1.71)
ρ	0.685*	0.365*
	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted \mathbb{R}^2	0.84	0.56
Log-Likelihood	307.00	185.14

- an airport serving a PSO route in France has 4.6 percent less average costs
- in Norway, insignificant

Variable	Norway	France
year	0.050*	0.026*
	(9.23)	(6.46)
wlu	-0.816*	-0.443*
	(-18.81)	(-10.46)
subspcost	0.203*	0.219*
	(3.87)	(2.76)
aerrevppax	0.113*	0.223*
	(3.25)	(4.39)
noncommatm	0.229***	-0.266*
	(1.65)	(-2.85)
pso	-0.018	-0.046***
	(-0.67)	(-1.75)
deprppax	0.032**	0.014***
	(2.20)	(1.71)
ρ	0.685*	0.365*
	(12.36)	(3.55)
R ²	0.98	0.94
Adjusted R ²	0.84	0.56
Log-Likelihood	307.00	185.14

•	positive relationship
•	lagged effect of investments
•	low capacity utilization
\rightarrow	distortion due to data Lifetime of investment Avinor's infrastructure investment*

*2002-2003: growth of average depreciation \rightarrow 53 percent

6. Conclusions and Further Research

Conclusions:

- significant level of spatial relatedness
- ✓ airports in a group present higher similarities
- subsidies lead to higher unit costs
- ✓ fiscal decentralization,
- ✓ ex-ante subsidies
- inadequate demand \rightarrow economies of scale
- ✓ increase traffic (see Bel, 2009)

Further Research:

- indirect effects

- ✓ secondary relationships, where spatial dependence of unit costs is transited via an airport located between those two airports
- Granger-causality test
- ✓ Causal effects of subsidies and unit costs
- effects of direct vs. cross subsidies
- improve data on French airports
- A more elaborated cost function approach

Thank you for your attention!

Tolga Ülkü tolga.ulku@yahoo.com