The Economics of Workplace Charging

Gebeyehu M. Fetene (Technical University of Denmark, DTU) Georg Hirte(TU Dresden) Carlo G. Prato (University of Queensland) Sigal Kaplan (DTU, TU Dresden) Stefan Tscharaktschiew (TU Dresden)

June 1, 2016 TU Berlin, Konferenz Verkehrsökonomie

Published: Transportation Research Part B, 88: 93-118, 2016.

Introduction

Introduction

- Obstacles for buying electric vehicles (EV)
 - Low battery performance
 - Missing charging infrastructure
- Options:
 - Charging at home (home place charging, HPC)
 - Commercial or public charging (CPC)
 - Charging at the workplace (workplace charging, WPC)
- Policy programs to foster WPC
 - E.g. US program (US Dep of Energy, 2014a): 600,000 workers, 300 employers in 2014
 - Québec (2014): subsidy 5000\$ per charging station, electric power is free of charge to employers

Our Questions

(WPC) be a decentral outcome?

② Which policy is effective in promoting WPC?

• Public charging stations, energy price, subsidies, technologies

Introduction

Benefits of WPC

Benefits for employees

- Fringe benefits (Leibowitz 1983)
- Reduces range-anxiety (Neubauer and Wood 2014)
- Extends availability of EV

Benefits for employers

- Lower costs
- Higher productivity (Delmas/Pekovic 2013, Lanfranchi/Pekovic 2014; Grolleau et al 2013)

Social benefits

- Car and mode choice (Sierzchula 2014)
- Externalities (Thiel et al 2010; Buekers et al 2014)

Our Research and Literature

- Suggest a model of decisions on workplace charging
- Analyze incentives and barriers on demand / supply of WPC.
- Onsider policies to foster WPC

Relates to

- De Borger and Wuyts (2009): Employer-paid parking
- De Borger and Wuyts (2011): Company cars offered to workers

Results

Main results

- There is no private WPC contract {wage, charging fee} beneficial to both employer and employee.
- Direct subsidies to employer (± specific energy price policies) could be a way to foster WPC.
- Not effective:
 - Lower charging time at public/commercial charging stations (CPC)
 - Reduction of energy prices to workers (Home place charging)

The Worker - Notations

$$H = \{HPC, CPC\}$$
 charging package W
- $CPC =$ public / commercial charging,
- $HPC =$ home charging
W = $\{HPC, WPC\}$ charging package W
- $WPC =$ workplace charging

Worker - Three Stage Decision

- 1. Choice of charging location for each package ${\it H}$ and ${\it W}$
 - $\bullet\,$ Idiosyncratic daily shock on charging costs at WPC and CPC

•
$$\beta_H \left(\begin{array}{c} p_H, p_C \\ - & + \end{array} \right)$$
 share of *HPC* within *H*
• $\beta_W \left(\begin{array}{c} p_H, p_W \\ - & + \end{array} \right)$ share of *HPC* within *W*

• Expected charging costs

$$c^{i} = (1 - \gamma) p^{H} + \gamma \begin{cases} \beta^{H} p^{H} + (1 - \beta^{H}) p^{C} & \text{if } i = H \\ \beta^{W} p^{H} + (1 - \beta^{W}) p^{W} & \text{if } i = W \end{cases}$$

• Expected travel time per VMT

$$t_{D}^{i} = t_{d} + \begin{cases} \gamma \left(1 - \beta^{H}\right) t_{c} & \text{if } i = H \\ 0 & \text{if } i = W \end{cases}$$

Hirte (TU Dresden)

Worker - Three Stage Decision (ctd.)

2. Choose consumption and traveling D

• **Utility** from consumption x, leisure, I, and travel, D

$$U^i = U^i(x^i, I^i, D^i), \qquad i = H, W.$$

• The (daily) monetary budget and time constraints are,

$$x^i + c^i D^i = \omega^i (1 - \tau) t_w, \qquad i = H, W$$

$$I^i + t_w + t^i_D D^i = T, \qquad i = H, W,$$

• FOC:
$$u_D^i/\lambda^i = \rho^i$$
,

• VTTS: $\rho^i = c^i + t_D^i \xi^i$

• VOT:
$$\xi^{i} = u_{l}^{i} / \lambda^{i} = \omega^{i} (1 - \tau)$$

Worker - Three Stage Decision (ctd.)

3. Choose *H* or *W* (contract)

- Indirect utility V^i
- Idiosyncratic preference ε for WPC
- An employee accepts a contract W if

$$V^W + \varepsilon > V^H$$

• Probability to choose contract $W = \{HPC, WPC\}$

$$\theta = \frac{1}{2} - \frac{V^H - V^W}{2a} \tag{1}$$

Comparative Statics - Lemmas

- 1. θ increases with the labor tax (fringe benefit)
- 2. θ declines
 - $\bullet\,$ Lower wage ω^W to compensate WPC
 - Lower charging time at public stations (CPC)

3. θ ambiguous

- Increase in charging fee p^W at WPC
- Increase in charging costs p^{C} at public stations
- Increase in charging costs p^H at home
- Direct price effect between ${\boldsymbol{H}}$ and ${\boldsymbol{W}}$
- Countervailing price effect of substitution within H or W

The Firm – Costs

- Representative firms, input is labor, wage $\bar{\omega} = MPL$
- WPC affects costs (not productivity)
- Firm may offers five different contracts

Daily expected costs (t_W working hours - fully flexible contract WPC₄):

$$C\left(\omega^{W}, p^{W}\right) = \bar{\omega}t_{w} \qquad \text{market wage costs} \\ + \theta \left[\left(\omega^{W} - \bar{\omega} \right) t_{w} & \text{wage reduction} \\ + \left(\bar{p} - p^{W} \right) d^{e} & \text{net energy cost} \\ + \frac{1}{k} \left(r\bar{c} - \delta \right) \right] \qquad \text{net facility cost}$$

Employer paid WPC,
$$WPC_1 = \{\omega^W = \bar{\omega}, p^W = 0\}$$

$$C\left(\omega^{W}, p^{W}\right) = \bar{\omega}t_{w} \qquad market wage costs \\ + \theta \begin{bmatrix} 0 & wage reduction \\ +\bar{p}d^{e} & net energy cost \\ + \frac{1}{k}(r\bar{c} - \delta) \end{bmatrix} \qquad net facility cost$$

Wage discount only,
$$WPC_2 = \left\{ \omega^W \leq \bar{\omega}, p^W = 0 \right\}$$

$$C\left(\omega^{W}, p^{W}\right) = \bar{\omega}t_{w} \qquad \text{market wage costs} \\ + \theta \left[\left(\omega^{W} - \bar{\omega} \right) t_{w} & \text{wage reduction} \\ + \bar{p}d^{e} & \text{net energy cost} \\ + \frac{1}{k} \left(r\bar{c} - \delta \right) \right] \qquad \text{net facility cost}$$

Charging fee only,
$$WPC_3 = \left\{ \omega^W = \bar{\omega}, p^W \ge 0 \right\}$$

$$C\left(\omega^{W}, p^{W}\right) = \bar{\omega}t_{w} \qquad \text{market wage costs } \bar{\omega}, 0$$

$$+ \theta \begin{bmatrix} 0 & \text{wage reduction} \\ + \left(\bar{p} - p^{W}\right)d^{e} & \text{net energy cost} \\ + \frac{1}{k}\left(r\bar{c} - \delta\right) \end{bmatrix} \qquad \text{net facility cost}$$

Simulation Benchmark of WPCs

Variable	Symbol	No WPC	WPC_1	$WPC_{2/4}$	WPC ₃	
General consumption	Х	91	93	86	91	
Leisure	1	8.49	8.35	8.36	8.52	
Mobility	D	52.71	65.88	65.54	59.18	
Monetary travel cost	с	0.058	0.022	0.022	0.058	
Gen travel cost	ρ	0.349	0.284	0.265	0.310	
Value of Time	ξ	10.15	10.50	9.71	10.07	
Utility	U	3.417	3.439	3.403	3.428	
Probability WPC	θ	—	0.82	0.29	0.65	
contract	$\omega^W p^W$	—	19.65 0	18.22 0	19.65 0.081	
WPC employee	ev	—	+7.88	-4.72	+3.77	
WPC employer	ps	—	-4.02	+1.98	-2.11	
WPC benefit	ev + ps		+3.86	-2.74	+1.65	
wpc employee			majority	minority	majority	
employer			no offer	offer	no offer	
WPC: Workplace charging EV-E: Electric Vehicle using employee						
	$(n-n^W)d^e$					
Hirte (TU Dresden)	Eco	Economics of Workplace Charging		01 June 2016 14 / 23		

Simulation - Results

- If WPC is beneficial for employee, there is no supply (WPC_1, WPC_3) .
- If WPC is beneficial for employers there is only a small demand (only for those with high idiosyncratic preferences for WPC)

Simulations - Interventions: WPC_1

Table: WPC₁ remedies $\{\bar{\omega}, \mathbf{0}\}$

Variable	Symbol	Remedy (a)	Remedy (b)	Dimension		
WPC facility subsidy	$\delta\uparrow$	1110 ¹	878 ²	€/EV-E*year		
Tariff paid by employer	$\bar{P}\downarrow$	_	0	€/km		
Probability WPC before	θ	0.82	0.82	%		
Probability WPC after	θ	0.82	0.82	%		
WPC employee benefit	ev	+7.88	+7.88	€/EV-E*day		
WPC employer benefit	ps	± 0.00	± 0.00	€/EV-E*day		
WPC benefit	$ev + \Delta P$	+7.88	+7.88	€/EV-E*day		
WPC decision	employee	majority	majority			
	employer	offer	offer			
WPC: Workplace charging EV-E: Electric Vehicle using employee						
¹ Implies $(\overline{c} - \delta) = -435 \in /EV-E^*$ year						
² Implies $(\overline{c} - \delta) = -20$	03 €/EV-E*ye	2 Implies ($\overline{c} - \delta$) = −203 €/EV-E*year				

Simulations - Interventions: WPC_3

Table: WPC₃ remedies $\{\bar{\omega}, p^W\}$

Variable	Symbol	Remedy (a)	Remedy (b)	Dimension	
WPC facility subsidy	$\delta\uparrow$	728 ¹	655 ¹	€/EV-E*year	
Tariff paid by employer	$ar{p}\downarrow$		0.000	€/km	
Probability WPC before	θ	0.65	0.65	%	
Probability WPC after	θ	0.65	0.65	%	
WPC employee benefit	ev	+3.77	+3.77	€/EV-E*day	
WPC employer benefit	ps	± 0.00	± 0.00	€/EV-E*day	
WPC benefit	ev + ps	+3.77	+3.77	€/EV-E*day	
WPC decision	employee	majority	majority		
	employer	offer	offer		
WPC: Workplace charging EV-E: Electric Vehicle using employee					
¹ Implies $(\overline{c} - \delta) = -53 \in /EV-E^*$ year					
² Implies $(\overline{c} - \delta) = +20 \in /EV-E^*$ year					

Remedies for WPC 2/4

Table: WPC₄ remedies $\{\omega^W, p^W\}$

Variable	Symbol	Remedy (a)	Remedy (b)	Remedy (c)	Remedy (d)
Tariff HPC	$p^{H}\uparrow$	0.088	—	—	_
Charging time	$t^{C}\uparrow$	—	0.054 ¹	—	—
Labor tax	$ au\uparrow$		—	0.80	—
Tariff CPC	$p^{C}\downarrow$		_	—	0.017
p WPC before	θ	0.30	0.30	0.30	0.30
p WPC after	heta	0.50	0.50	0.50	0.50
WPC employee	ev	+0.00	+0.00	+0.00	+0.00
WPC employer	ps	+3.19	+2.71	+3.34	+3.26
WPC benefit	ev + ps	+3.19	+2.71	+3.34	+3.26
WPC decision	employee	majority	majority	majority	majority
	employer	offer	offer	offer	offer
WPC: Workplace charging EV-E: Electric Vehicle using employee					
1 Implies a recharging time of $pprox$ 11 hours for a driving range of 200 km					

Hirte (TU Dresden)

Conclusions

- WPC is either not supplied by firms or not demanded by the majority of workers.
- Subsidies to employer are the most promising remedy to raise WPC
- Subsidies to worker are not working! (see also Hirte/Tscharaktschiew 2013)
- There is a trade-off between supporting CPC and WPC
- The approach can be applied to legal and illegal uses of firms resources (e.g. Internet)
- \bullet We do neither consider productivity effects nor green branding \rightarrow downward bias in probability to choose WPC

Thanks for your attention!

Calibration

Description		Symbol	Value	Dimension		
Transport data						
Degree of range-anxiety		γ	0.7	%		
Driving time		t _d	1.5	min/km		
Recharging time		t_c	1.32	min/km		
	Prices, cost	ts, taxes				
Market wage rate		$\overline{\omega}$	19.65	€/h		
Wage rate EV-E	ω^W	\leq 19.65	€/h			
Electricity tariff for HP	p^H	0.052	€/km			
Charging fee WPC		p^W	\geq 0	€/km		
Electricity fee for CPC	p^{C}	0.091	€/km			
Electricity tariff paid by	\overline{p}	0.027	€/km			
Price general consumpt	p^X	1	€/unit			
Labor tax rate		au	0.40	%		
Unit capital cost	r	1.03	_			
WPC facility costs		ī	675	€/EV-E*year		
Hirte (TU Dresden)	Economics of Workpla	ce Charging	- 01	L June 2016 21 / 23		

Data

Description	Symbol	Value	Dimension		
Other data					
Preference general consumption	η_X	0.47	_		
Preference leisure	η_I	0.44	_		
Preference mobility	η_D	0.09	—		
Time endowment	Т	18	h/day		
Daily working time	t_w	8	h/day		
Parameter WPC probability function	а	0.04	—		
Number of contract days	k	225	days		

WPC: Workplace charging EV-E: Electric Vehicle using employee Average driving speed is $\frac{1}{t_d} = 40 \text{ km/h}$ Recharging time of 2.2 hours for a driving range extension of 100 km Assuming electricity price of 0.29 €/kwh and EV energy intensity of 0.18 kwh/km Assuming that the employer's electricity cost is 52% of the employee's cost at home Benchmark case $\delta = 0$; Others; $\delta \geq 0$ Conclusions

Simulation - Function, Charging Shares, Rents

Cobb-Douglas utility function

$$U\left(X^{i}, I^{i}, D^{i}\right) = \eta_{X} \log\left(X^{i}\right) + \eta_{I} \log\left(I^{i}\right) + \eta_{D} \log\left(D^{i}\right)$$
(2)

The relative charging shares

$$\beta^{H}\left(p^{H}, p^{C}\right) = \frac{1}{1 + \exp\left(p^{H} - p^{C}\right)}$$
$$\beta^{W}\left(p^{H}, p^{W}\right) = \frac{1}{1 + \exp\left(p^{H} - p^{W}\right)}$$