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Problem 

Something like Uber: Is a platform: needs to recruit drivers to provide supply 
However, Uber, other than e.g. Youtube, operates in geographical space. 
Consequences of that. 

Outline 
• Conceptual model 
• Simulations with stylized model 
• Simulations on a realistic substrate
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Conceptual



Conventional market (a)
Top left 
high demand, low supply ➝ prices high  
➝ demand ↘︎ & supply ↗  

Top right 
high demand, high supply ➝ prices somewhat high 
➝ demand ↘︎ & supply ↘︎   
Etc. 
demand & supply meet around (0.5,0.5), @ medium price
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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Market with network effects & economies of scale (b)
(network effects: more customers = more attractive for 
customers; economies of scale: more supply = lower average 
costs. E.g. telephone system.) 

Top left 
demand high, supply low ➝ prices high 
➝ demand ↘︎, supply ↗ (same as before). 

Top right 
demand high, supply high ➝ prices low  
➝ demand ↗, supply ↗ (total opposite). 

Overall 

Dynamics has two attractive fixed points: (0,0) & (1,1). 
Supply owner needs to predict demand. 
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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Platform markets (c)
Same as (b) except: 
Platform owner does not own supply! 
E.g. UBER ≠ uber DRIVERS 

➝ Platform owner needs to predict max possible demand and 
supply (e.g. dotted rectangle). 

Potentially viable only if rectangle reaches into UR. 

Only potentially viable system can become super-critical. 

Even a potentially viable system can remain sub-critical.
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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From homogeneous to spatial markets
(Approximately) non-spatial markets 
E.g. youtube: 
• Viewers (=demand)/uploaders (=supply) sitting everywhere. 

➝ One global diagram (c) to describe system. 

Spatial markets 
E.g. UBER: 
• Users at locations ➝ density 
• Drivers at locations ➝ density 

➝ Many local diagrams (c) to describe system.  

!8

4 Journal Title XX(X)

frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
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forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).

Prepared using sagej.cls

4 Journal Title XX(X)

frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).

Prepared using sagej.cls

4 Journal Title XX(X)

frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).

Prepared using sagej.cls

4 Journal Title XX(X)

frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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Stylized simulations



Stylized world
Stylized world 
• Square world of size 1x1, 3x3, 5x5 (km x km) 
• Potential users Uniformly | Normally arranged. 

Simulation. Per time step: 
• Vehicles “rain” into system (U or N). 
• Users “interested” if > 5 vehs within 0.1km 
• Go through interested users and match with closest vehicle; 

remove vehicle from pool. 
• Remove vehicles where pickup distance was > 500m. 
• The “vehicles rain” is reduced over time. 
• Some addt’l technical details which are, I hope, irrelevant. 

!11



Expectations
• Taxis either become super-critical, or die out. 
• More “vehicle rain” ➝  higher proba to become super-

critical. 
• More population ➝ higher proba ... 

• The smaller the system, the fuzzier the boundary. 
(“Finite size effect” in “theory of phase transitions”.)
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Expectations
• Taxis either become super-critical, or die out. 
• More “vehicle rain” ➝  higher proba to become super-

critical. 
• More population ➝ higher proba ... 

• The smaller the system, the fuzzier the boundary. 
(“Finite size effect” in “theory of phase transitions”.)

!12



Normally distributed “vehicles rain” (*N cases) higher 
proba than uniformly distributed (*U cases). 

Population distribution much less important. 

➝ Initially rather concentrate your vehicles into 
smaller areas!

!13

Now all NU cases (population/vehicles distribution)



Simulations with real world substrate



Yarra Ranges area

Same simulation. 
Only difference (I hope): “vehicles rain” uniform per “suburb”.

!15



Over time ...

• Some areas become and remain super-critical. 
• Infect all reachable neighbors. 

• Run again ➝ get different outcome 

!16



Conclusion



Conclusion
• Take platform market model from non-spatial to spatial. 
• Have criticality dynamics separately in each “cell”. 
• Cells where demand/supply reach into UR can become 

super-critical. 
• Super-critical cells infect neighbors. 

➝ Start such platforms in urban cores; concentrate initial 
subsidies there & remove once super-critical. 
➝ Will spread by itself to all “reachable” areas. 
➝ Move subsidies to smaller and smaller cities; keep there 
until super-critical. 

“Driverless vehicles owned by Uber” very different system 
from current platform system.

!18
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).

Prepared using sagej.cls

4 Journal Title XX(X)

frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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frontier”, which can be seen as the line separating the basins
of attraction of the two fixed points, when plotting numbers
of customers and number of suppliers (Fig. 1c).

Conceptual Model and Expectations

We are interested in two-sided flexible and shared
transportation markets: markets where the platform itself
does not directly control drivers (supply) and customers
(demand). Some systems seem similar, e.g., bicycle sharing
systems, but in general are not, since the platform provider
and the supplier are often the same. They could, however,
be converted into a two-sided market, for example, in a
station-based bicycle sharing system, where stations would
be provided by persons and institutions, and not by the
platform provider itself.

In order to make this concrete for a spatial approach, let
us assume that our area of interest is divided into regular
cells. It is now plausible to assume that we will have the
dynamics similar to Fig. 1c at each grid cell. However, we
will additionally have an infection process: If one cell is far
in the UR corner, it will infect its neighbors because both
the high demand and the high supply will radiate into the
neighboring cells. Similarly, if a cell is far in the LL corner,
this cell will not help its neighbors to become served, and
thus effectively inhibit them. Overall, the dynamics becomes
quite similar to that of the well-known Ising model (Ising
1925; Chandler 1987), where spins, which are either “up”
or “down”, try to align to each other, but are also subject
to some random noise. There is an elaborate theory of what
happens when the noise is larger or smaller; for the paper
here, we assume small noise, and thus have a so-called
first-order phase transition between “most spins up” and
“most spins down”. The model can also be used to describe
aspects of segregation (Müller et al. 2008); translating this
to our two-sided transport market, “up” would correspond to
“served”, and “down” to not-served.

From this theory, one can come up with predictions. For
the following, it is assumed that each individual cell follows
the dynamics according to Fig. 1c, and we consider the same
plot, but in which all cells’ demand and supply values are
averaged over the whole system. For homogeneous systems
(same population density everywhere), one would expect the
following:

• In a system of infinite size, one would expect that
the dashed line in Fig. 1c divides the dynamics
deterministically into two basins of attraction: If the
system starts to the lower left (LL) of that line, it will
deterministically go to zero demand and supply (sub-
critical); when starting in the upper right (UR), it will
deterministically go to high supply and demand (=
super-critical = “served”).

• In a system of finite size, one would assume that
boundary to become blurred, and the deterministic
behavior becomes replaced by probabilities: When
starting the system somewhere inside the LL region,
one would still expect a non-zero probability to
become super-critical (= served); that probability
would be 50% at the dashed line, and become smaller
with increasing distance from it. Conversely, when
starting somewhere inside the UR region, one would
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Figure 1. Dynamics for different levels of demand and supply in
different types of markets. A larger value along the demand axis
means a higher demand; a larger value along the suppy axis
means a larger supply. Each (demand,supply) pair corresponds
to a point in the 2-dimensional plot. The respective driving
forces are denoted by arrows. (a) Regular market. (b) With
economies of scale and network effects. (c) Two-sided market
with economies of scale and network effects. The dashed line
divides UR (upper right) from LL (lower left). The dotted line
denotes a possible market where the densities of demand and
supply are smaller (e.g., in rural areas) than they maximally
could be (e.g., in urban centres).
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